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Abstract

An analysis is made of the sound generated by the impingement of a high-speed ventilating gas jet on the gas–water

interface of a ventilated supercavity. A precise analytical problem is formulated and solved in which the supercavity is

modelled by a spherical cavity of equal interior volume and the jet consists of a planar, radially symmetric flow from the

centre of the sphere. The gas content of the sphere is assumed to be maintained at a constant mean level by steady exhaust

into the water from the ‘rear end’ of the cavity. It is estimated that the damping of jet-induced oscillations by this outflow is

negligible compared with conventional losses produced by acoustic radiation and by viscous and thermal dissipation. The

sound radiated into the water is omnidirectional at low frequencies, but with increasing frequency it progressively exhibits

the directional characteristics of an acoustic dipole with axis centred on the radial axis of the gas jet.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

An underwater vehicle can attain very high speeds if a substantial fraction of it is enclosed within a gaseous
envelope or ‘ventilated supercavity’, which forms a ‘cushion’ that eliminates conventional skin friction and
yields drag reductions of up to 90% [1]. The cavity is initiated at a ‘cavitor’ at the nose and terminates
sufficiently far downstream that it encloses the whole of the aft section of the vehicle except for control
surfaces used for guidance (see Ref. [2] for a general discussion and survey). It is maintained in a statistically
steady state by the injection of gas just to the rear of the cavitator (Fig. 1). The rate and method of injection
are carefully controlled to avoid overpressures and instabilities that can cause the cavity to pulsate [1–4].
Under stable conditions, involving high-speed motion through the water, the gas exhausts from the rear end of
the cavity by the quasi-periodic shedding of ring vortices with gaseous cores. At low speeds (i.e. at low Froude
numbers, that are not strictly relevant in the present context) the supercavity resembles a hot ‘plume’ and gas
escapes through two trailing, hollow vortex tubes formed by buoyancy-induced plume bifurcation [5].

The cavity is a significant source of aerodynamic sound that can interfere with the proper deployment and
operation of the vehicle [6–9]. Turbulence in the aqueous boundary layer approaching the wetted trailing edge
of the cavitator from the nose generates sound and hydrodynamic pressure fluctuations as it convects across
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Schematic experimental supercavity.

Fig. 2. Configuration of the spherical cavity of radius a and the coordinate system. A thin, axisymmetric planar gas jet flows outwards

from the origin in the plane y ¼ p=2. The mean cavity volume is maintained constant by assuming that gas exhausts steadily from the ‘rear

end’ of the cavity by the ejection of quasi-periodic vortex rings (from the vicinity of the point A, for example).
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the edge [10–13]. To analyse sources further downstream at non-resonant, higher frequencies that are
important in practice, it is reasonable in a first approximation to neglect pressure fluctuations within the
cavity, because of the vast difference in mass densities of the gas and water, in which case the gas–water
interface can be treated as a ‘pressure-release’ surface. Then sound generated by turbulence quadrupoles in the
flow adjacent to the cavity edge should be relatively unimportant, because the pressure-release interface causes
the sound pressure to vary as rwv2M3, where the Mach number M ¼ v=cw51, v being a flow velocity and
rw; cw are, respectively, the mean density and sound speed in water [14]. Bubbles and water droplets in the
break-up region of the cavity far downstream are respectively equivalent to monopole and dipole sources [8];
except at extremely high frequencies, their importance is again expected to be greatly reduced by the proximity
of the pressure-release cavity.

Observation [12] suggests that the acoustic noise is dominated over a broad range of frequencies by the
unsteady impingement of gas on the gas–water interface. Gas from a reservoir flows into the cavity as one or
more jets, whose impingement ripples the interface and produces unsteady surface forces and a distributed
acoustic surface source of dipole type. The acoustic pressure generated by the dipole varies nominally as
rov2j M per unit area of the interface, where ro, vj denote, respectively, the mean gas density and the velocity
of the jet.

In this paper we examine the details of sound generation by the jet. We do this by considering an idealized
supercavity of spherical geometry in which the gas enters from the centre in the form of a thin, radially
spreading jet (Fig. 2). This canonical model permits general deductions to be made about the sound
independently of the difficulties associated with the modelling of a real cavitator and cavity geometries [15–17].
A highly simplified cavity geometry of this kind cannot, of course, represent in detail the acoustics of the real
supercavity, but general conclusions relating to source mechanisms and sound waves of characteristic scales
that are smaller than the sphere radius should be representative of what happens in practice at high
frequencies, whereas predictions at larger length scales (at ‘low frequency’) should be qualitatively the same.
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The mathematical problem is formulated in Section 2 and solved formally by series expansion. Low-
frequency cavity resonances excited by the jet are discussed in Section 3; these are likely to dominate the sound
radiated to the far field. Higher frequency components of the noise are discussed in Section 4. Specific results
and conclusions are drawn by choosing the volume of the cavity to be approximately the same as that of a
typical experimental supercavity.
2. The acoustic problem

2.1. Formulation

Consider a spherical cavity of undisturbed radius a in water of mean density rw and sound speed cw which is
at rest at infinity. Let the origin O be at the centre of the cavity (Fig. 2) and introduce spherical polar
coordinates ðr; y;fÞ (0oyop; 0ofo2p), where the latitude y is measured from the positive x direction in the
figure. Gas enters the cavity via a thin, axisymmetric planar jet from a source at O, and impinges normally on
the cavity interface S along the great circle y ¼ p=2. It is assumed that the mean volume of the cavity and the
mean density ro of the gas in the cavity are maintained constant by the steady exhausting of gas into the water
from the ‘rear end’ of the cavity, say the vicinity of the point A in Fig. 2.

Turbulence fluctuations in the jet are assumed to be axisymmetric and to exert an unsteady radial force on
the cavity interface equal to F ðtÞ per unit length of the circle of impingement on S. The definition of F ðtÞ is
made precise by requiring it to equal the force that would be exerted on the interface by the jet when the
interface is assumed to be rigid. The forced motion of the interface produces pressure fluctuations pðr; y; tÞ that
satisfy

1

c2o

q2

qt2
� r2

� �
p ¼ 0; roa,

1

c2w

q2

qt2
� r2

� �
p ¼ 0; r4a, (1)

respectively, within the cavity and in the water, where co is the mean speed of sound in the gas.
The analytical problem is simplified by introducing the Fourier decomposition F ðtÞ ¼

R1
�1

F oðoÞe�iot do
and considering first the solution for the case where the cavity is excited by a time-harmonic radial force F oðoÞ
per unit length. The solution of the time-dependent problem can subsequently be found by application of the
integral operator

R1
�1
ð�Þe�iot do. Then the time-harmonic pressure pðr; y;oÞ satisfies

ðr2 þ k2
Þp ¼ 0; where

k ¼ ko ¼ o=co; roa;

k ¼ kw ¼ o=cw; r4a:

(
(2)

The solution in the outer region r4a must exhibit outgoing wave behaviour. The two solutions in ro4a are
related by the conditions that the net pressure and normal displacement are continuous at the interface.
Because the force per unit area applied to the interface by the jet is ðF o=aÞdðy� p=2Þ, the net pressure is
continuous at r ¼ a provided

pðaþ 0; y;oÞ ¼ pða� 0; y;oÞ þ
F o

a
d y�

p
2

� �
; 0oyop. (3)

Similarly, because F o corresponds to the force exerted on a rigid interface, continuity of normal displacement
is satisfied by requiring

1

rw

qp

qr

� �
r¼aþ0

¼
1

ro

qp

qr

� �
r¼a�0

; 0oyop. (4)
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2.2. Solution in the general case

Within the cavity the time-harmonic solution that remains finite at r ¼ 0 has the expansion [8,18]

p ¼
X1
n¼0

AnjnðkorÞPnðcos yÞ; roa, (5)

where jn is a spherical Bessel function of the first kind, Pn denotes the Legendre polynomial of order n [19], and
the coefficients An are to be determined. In the water the pressure is expanded in terms of outgoing radiating
waves in the form

p ¼
X1
n¼0

Bnhð1Þn ðkwrÞPnðcos yÞ; r4a, (6)

where the Bn are constants and hð1Þn is the spherical Hankel function of the first kind [19].
The coefficients An, Bn are calculated from conditions (3) and (4). The first supplies

X1
n¼0

ðBnhð1Þn ðkwaÞ � AnjnðkoaÞÞPnðcos yÞ ¼
Fo

a
d y�

p
2

� �
; 0oyop, (7)

which, by means of the orthogonality relation
R p
0 Pnðcos yÞPmðcos yÞ sin ydy ¼ 2dnm=ð2nþ 1Þ and the formula

Pnð0Þ ¼ cosðnp=2ÞGððn=2Þ þ 1
2
Þ=

ffiffiffi
p
p

Gððn=2Þ þ 1Þ [19], reduces to

Bnhð1Þn ðkwaÞ � AnjnðkoaÞ ¼
F o

a

ð2nþ 1Þ

2
ffiffiffi
p
p cos

np
2

� � Gððn=2Þ þ 1
2Þ

Gððn=2Þ þ 1Þ
. (8)

Condition (4) yields

Bnkw

rw

hð1Þ
0

n ðkwaÞ �
Anko

ro

j0nðkoaÞ ¼ 0, (9)

where the prime denotes differentiation with respect to the argument. Hence

An ¼
ð2nþ 1Þ

2
ffiffiffi
p
p cos

np
2

� � Gððn=2Þ þ 1
2
Þ

Gððn=2Þ þ 1Þ

Fo

ajnðkoaÞðZn � 1Þ
,

Bn ¼
ð2nþ 1Þ

2
ffiffiffi
p
p cos

np
2

� � Gððn=2Þ þ 1
2
Þ

Gððn=2Þ þ 1Þ

F oZn

ahð1Þn ðkwaÞðZn � 1Þ
, (10)

where

Zn ¼
rwcw

roco

j0nðkoaÞ

jnðkoaÞ

hð1Þn ðkwaÞ

hð1Þ
0

n ðkwaÞ
. (11)

Now cosðnp=2Þ � 0 when n is odd. Therefore, by replacing n in the above expressions by 2n, using the
result [19]

Gðnþ 1
2
Þ

Gðnþ 1Þ
¼

ffiffiffi
p
p 1 � 3 � 5 . . . ð2n� 1Þ

2nn!
�

ffiffiffi
p
p ð2nÞ!

ð2nn!Þ2

and substituting into expansions (5) and (6), we deduce the following desired representations of the unsteady
pressure within the cavity and radiated into the water:

pðr; y;oÞ ¼
F o

2a

X1
n¼0

ð�1Þn
ð4nþ 1Þð2nÞ!

ð2nn!Þ2
P2nðcos yÞj2nðkorÞ

ðZ2n � 1Þj2nðkoaÞ
; roa, (12)

¼
F o

2a

X1
n¼0

ð�1Þn
ð4nþ 1Þð2nÞ!

ð2nn!Þ2
Z2nP2nðcos yÞh

ð1Þ
2n ðkwrÞ

ðZ2n � 1Þh
ð1Þ
2n ðkwaÞ

; r4a. (13)
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2.3. Special limiting cases

It is also useful to note the corresponding forms of Eqs. (12) and (13) when (i) the water is regarded as
incompressible (i.e. when cw !1), and (ii) there is no gas in the cavity ðro ! 0Þ.

In case (i) there can be no damping of the sound in the cavity by radiation losses, and we find

pðr; y;oÞ ¼
F o

2a

X1
n¼0

ð�1Þn
ð4nþ 1Þð2nÞ!

ð2nn!Þ2
P2nðcos yÞj2nðkorÞ

ðZ02n � 1Þj2nðkoaÞ
; roa, (14)

¼
F o

2a

X1
n¼0

ð�1Þn
ð4nþ 1Þð2nÞ!

ð2nn!Þ2
Z02nP2nðcos yÞ
ðZ02n � 1Þ

a

r

� �2nþ1

; r4a, (15)

where

Z0n ¼
�rwkoa

roðnþ 1Þ

j0nðkoaÞ

jnðkoaÞ
. (16)

In case (ii), where the cavity is treated as a vacuum, Zn !1 and there are no pressure fluctuations within the
cavity (p � 0 for roa). Then expression (13) reduces to

pðr; y;oÞ ¼
F o

2a

X1
n¼0

ð�1Þn
ð4nþ 1Þð2nÞ!

ð2nn!Þ2
P2nðcos yÞh

ð1Þ
2n ðkwrÞ

h
ð1Þ
2n ðkwaÞ

; r4a. (17)

2.4. Suppression of coherent interior modes

Just inside the cavity interface the Bessel function jnðkorÞ ¼ 1
2
ðhð1Þn ðkorÞ þ hð2Þn ðkorÞÞ in the expansion (5) of the

cavity pressure can be interpreted as representing a component travelling wave �hð1Þn ðkorÞ incident on the
interface from within the cavity, and a component �hð2Þn ðkorÞ reflected from the interface. Waves reflected from
the interface will subsequently impinge again on the interface, possibly leading to the establishment of
coherent resonant oscillations. At high frequencies scattering by small-scale irregularities on the interface will
induce incoherence in the interior reflected wave field tending to suppress the growth of coherent resonances.
By discarding the incident coherent component hð1Þn ðkorÞ of the Bessel function we can therefore hope to mimic
the effect of random interface scattering.

This is equivalent to repeating the analysis leading to the predictions (12) and (13) with jnðkorÞ replaced
throughout by hð2Þn ðkorÞ, and yields

pðr; y;oÞ ¼
F o

2a

X1
n¼0

ð�1Þn
ð4nþ 1Þð2nÞ!

ð2nn!Þ2
P2nðcos yÞh

ð2Þ
2n ðkorÞ

ðẐ2n � 1Þh
ð2Þ
2n ðkoaÞ

; roa, (18)

¼
F o

2a

X1
n¼0

ð�1Þn
ð4nþ 1Þð2nÞ!

ð2nn!Þ2
Ẑ2nP2nðcos yÞh

ð1Þ
2n ðkwrÞ

ðẐ2n � 1Þh
ð1Þ
2n ðkwaÞ

; r4a, (19)

where

Ẑn ¼
rwcw

roco

hð2Þ0n ðkoaÞ

hð2Þn ðkoaÞ

hð1Þn ðkwaÞ

hð1Þ
0

n ðkwaÞ
. (20)

3. Low-frequency resonances

The spectrum of sound radiated to large distances from a cavity tends to be dominated by low frequencies,
comparable to the fundamental Minnaert volumetric pulsation frequency [7,20]. This and other resonant
oscillations of the cavity are excited by the jet. In this section we examine this excitation. Predictions will be
illustrated for the case of an air-filled cavity in water at standard temperature and pressure (STP) when the
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cavity has radius a ¼ 7:0 cm, which corresponds to a cavity volume approximately the same as that of a typical
small-scale experimental supercavity.

3.1. Monopole resonances

The monopole is nominally the most efficient source, but it is relevant only at very low frequencies.
Volumetric pulsations are then analogous to oscillations of a mass–spring system in which the moving ‘mass’
is the water displaced radially by the cavity, and the ‘spring’ stiffness is furnished by the compressibility of the
contained gas. The compressibility of the water makes a negligible contribution to the gross motion of the
cavity at low frequencies, when the acoustic wavelength is very much larger than the radius a of the cavity.
The resonance frequencies can therefore be calculated by ignoring the aqueous compressibility, which is
responsible only for relatively weak radiation-damping of the oscillations. This is the only effective damping
mechanism except at extremely low frequencies, because viscous and thermal effects are negligible for such
large-scale motions (when the acoustic Reynolds number b1 [21,22]). However, our model implicitly assumes
that the gas content of the cavity is maintained roughly constant by the steady exhausting of the gas into the
water, and we shall estimate below the damping arising from this.

According to Eqs. (14) and (15) resonant oscillations of a mode of order 2n are determined by the zeros of
ðZ02nðkoaÞ � 1Þj2nðkoaÞ ¼ 0 when the water is regarded as incompressible, where Z02n is defined as in Eq. (16).
Using the relation j0nðzÞ ¼ jn�1ðzÞ � ½ðnþ 1Þ=z�jnðzÞ, the resonance condition is equivalent to

koaj2n�1ðkoaÞ � ð2nþ 1Þ 1�
ro

rw

� �
j2nðkoaÞ ¼ 0. (21)

For the monopole n ¼ 0, Eq. (21) reduces to [19]

koa� 1�
ro

rw

� �
tanðkoaÞ ¼ 0. (22)

When ro=rw51 the smallest positive root of this equation is koa �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ro=rw

p
, which corresponds to

volumetric oscillations at the Minnaert radian frequency o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3roc2o=rwa2

p
[21,22] for which the pressure does

not vary with position in the cavity.
For our model cavity of radius a ¼ 7 cm the Minnaert frequency o=2p�47Hz. But this mode is actually

atypical of monopole resonances, because it corresponds to the special case in which the acoustic wavelength is
much larger than the diameter of the cavity. Higher frequency volumetric resonances (determined by the larger
roots of Eq. (22)) involve pressure fluctuations within the cavity that oscillate between positive and negative
values with distance from the centre. The first ten monopole modes are listed in Table 1: the wavelengths
2p=ko of the higher order modes ðN41Þ are always smaller than the cavity diameter.

The Nth order monopole resonance wavenumber ko is well approximated at higher frequencies by the formula

ðkoaÞN ¼
ð2N � 1Þp

2
1�

4ð1� ro=rwÞ

ð2N � 1Þ2p2

� �
; for NX4. (23)

3.2. Influence of dissipation

The amplitudes of resonant modes excited by the jet are governed by losses produced by acoustic radiation,
possibly by viscous and thermal diffusion at lower frequencies [21,22], and also by hydrodynamic convection
Table 1

Cavity monopole wavenumbers and frequencies at STP (from Eq. (22))

Number N 1 2 3 4 5 6 7 8 9 10

koa 0.06 4.49 7.73 10.90 14.07 17.22 20.37 23.52 26.67 29.81

Frequency (Hz) 47 3474 5972 8429 10,874 13,312 15,748 18,181 20,614 23,046
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of vibrational energy from the cavity by the steady outflow of gas into the water [8]. These mechanisms
typically produce small corrections in the values of the resonance frequencies predicted in the absence of
dissipation. The first-order effect is that each undamped resonant frequency ô, say, is replaced by o � ô� i�,
where � ¼ �ðôÞ40 is a small imaginary part that would cause the corresponding unforced resonance to decay
in amplitude like e��t. According to Devin [21], when viscous and thermal damping are important their
contributions to � are comparable in magnitude to the radiation damping. We can evaluate the effect of
radiation from the solutions (12) and (13), which takes account of the compressibility of the water, i.e. from
the solutions of Z2nðkoaÞ � 1 ¼ 0:

rwcw

roco

j02nðkoaÞ

j2nðkoaÞ

h
ð1Þ
2n ðkwaÞ

h
ð1Þ0

2n ðkwaÞ
¼ 1; where ko ¼

o
co

; kw ¼
o
cw

. (24)

It will be sufficient to consider the damping of the monopole modes ðn ¼ 0Þ, and in particular the dominant
pulsational mode, for which ôa=co � k̂oa � 0:06 (N ¼ 1 in Table 1). By setting n ¼ 0 in Eq. (24) we derive the
analogue of the undamped frequency equation (22)

koa� 1�
ro

rw

þ ikoa
roco

rwcw

� �
tanðkoaÞ ¼ 0 (25)

from which the compressible correction to the Minnaert approximation is readily deduced to be:

koa � k̂oa 1� i
cok̂oa

2cw

 !
; where k̂oa ¼

ffiffiffiffiffiffiffi
3ro

rw

s
. (26)

Therefore, the minimum complex frequency of volumetric resonances is given by

o ¼
co

a

ffiffiffiffiffiffiffi
3ro

rw

s
� i�; � ¼

c2oðk̂oaÞ2

2cwa
, (27)

where k̂oa � 0:06 (Table 1).
This estimate of the radiation damping coefficient � should be characteristic of the damping also expected

from viscous and thermal losses. However, it is important that it be compared with the hydrodynamic
damping produced by the efflux of gas from the ‘rear’ of the cavity. This is determined by the following
argument.

Let E denote the mean energy density (per unit volume) of the resonance mode within the cavity. The rate at
which energy of this mode is removed from the cavity by convection in the gas exhausting into the water is QE,
where Q is the volume velocity of the exhausting gas, which is the same as the volume inflow rate in the jet.
Hence, if V ¼ 4

3
pa3 is the cavity volume, the net monopole energy VE within the cavity decays at a rate

determined by

dE

dt
¼ �

QE

V
. (28)

But E�jpj2=roc2o and djpj2=dt ¼ �2�jpj2, where � is the corresponding imaginary part of the resonance
frequency associated with hydrodynamic damping, i.e. � ¼ Q=2V .

Hence, from Eqs. (27) and (28)

�hydrodynamic

�radiation
�

Q=V

c2oðk̂oaÞ2=cwa
. (29)

The typical gas inflow rate Q�0:01m3/s for our notional experimental supercavity whose volume is the same
as that of a sphere of radius a ¼ 7 cm, Taking k̂oa ¼ 0:06 and using STP values for the other quantities in
Eq. (29), we deduce that

�hydrodynamic

�radiation
�0:02

and therefore that the steady efflux of gas into the water has no significant impact on damping.
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Table 2

Quadrupole resonance wavenumbers and frequencies at STP (from Eq. (30))

Number N 1 2 3 4 5 6 7 8 9 10

koa 3.34 7.29 10.61 13.85 17.04 20.22 23.39 26.55 29.71 32.86

Frequency (Hz) 2585 5636 8205 10,704 13,175 15,632 18,082 20,526 22,967 25,406

A.W. Foley et al. / Journal of Sound and Vibration 315 (2008) 88–99 95
This conclusion is doubly true for higher frequency modes which radiate more freely into the water.
The implication is that the acoustic properties of the cavity are not significantly influenced by the
gaseous exhaust. This is evidently a consequence of pressure continuity across the cavity interface and in the
exhaust flow.

3.3. Quadrupole resonances

The case n ¼ 1 in Eq. (13) represents a radiation field of quadrupole directivity. The corresponding
resonance frequencies when the compressibility of the water is neglected are determined by setting n ¼ 1 in
Eq. (21), i.e. by the roots of

ðkoaÞ3 � 9koa 1�
ro

rw

� �
þ 9� 4ðkoaÞ2 �

3ro

rw

ð3� ðkoaÞ2Þ

� �
tanðkoaÞ ¼ 0. (30)

The length scales of these wave modes within the cavity are no larger than the cavity diameter. Indeed it is
readily confirmed by expansion of the equation in powers koa that there are no solutions satisfying jkoaj51.
Numerical solution of Eq. (30) yields the results in Table 2, where the frequencies tabulated in the third line are
for a 7 cm spherical air cavity.

Similar analyses of the resonances can be performed for the higher order modes (n41 in Eqs. (12) and (13),
but it is not necessary to present details here. It is clear that the principal low-frequency resonances
occur for koa41, the only exception being the special case of the Minnaert monopole. Experiments on
cavitating jets all indicate that the far-field acoustic spectrum peaks in the neighbourhood of a frequency
comparable to the Minnaert frequency [7,20] and typically decays like o�2 at higher frequencies. Our results
indicate a similar behaviour for the cavity (the corresponding continuum spectrum being formed by the
aggregate contributions from the cavity resonances) although the precise details for the spherical cavity and
for a practical ventilated supercavity depend on the frequency dependence of the appropriate jet forcing
function F oðoÞ.

4. Directivity of the sound

The acoustic far field in the water satisfies kwrb1. In this limit the asymptotic approximation hð1Þn ðzÞ �

ð�iÞnþ1eiz=z permits the reduction of Eq. (13) to the form

pðr; y;oÞ � �
iF oe

�ioðt�r=cwÞ

kwar

X1
n¼0

AnZ2nP2nðcos yÞ

ðZ2n � 1Þh
ð1Þ
2n ðkwaÞ

; kwr!1, (31)

where An ¼ ð4nþ 1Þð2nÞ!=f2ð2nþ1Þðn!Þ2g. Therefore

pðr; y;oÞ
F o=a

				
				
2

�
1

ðkwrÞ2

X1
n;m¼0

AnAmZ2nZ2mP2nðcos yÞP2mðcos yÞ

ðZ2n � 1ÞðZ2m � 1Þh
ð1Þ
2n ðkwaÞh

ð1Þ
2mðkwaÞ

					
					; kwr!1. (32)

This formula determines the directivity (/ jpðr; y;oÞj2) of the sound radiated into the water. The directivity
is plotted as a function of y in Fig. 3 (on a polar plot, each curve being normalized with respect to its
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Fig. 3. Directivity of the jet-excited sound for the general case of an air-filled spherical cavity at STP determined by Eq. (32) when

kwa ¼ 0:1, 1, 10, 100. Each curve is normalized with respect to its peak value.

Fig. 4. The problem of sound produced by a two-dimensional jet impinging on a nominally plane interface.
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maximum value) for a cavity filled with air at STP when kwa ¼ 0:1; 1; 10; 100. The field shape is spherically
symmetric at very low frequencies ðkwao0:1Þ characteristic of the Minnaert monopole. As the frequency
increases (for kwa greater than about 10, i.e. for frequencies exceeding 38,600Hz for a spherical cavity of
radius 7 cm) the sound exhibits a progressive tendency to radiate preferentially in the side-line direction with
the directivity of the principal side lobe being approximately sin2 y, i.e. that of an axisymmetric dipole with
axis along the radial direction of the jet.

The dipole radiation is accompanied by narrow beams radiated in the fore and aft directions ðy ¼ 0; pÞ. The
presence of these beams appears to be an artifact of the spherical geometry and would be absent for the more
realistic geometries, such as that of the ‘cigar’-shaped cavity illustrated in Fig. 1, because the interface is
effectively equivalent to a ‘pressure release’ surface along which sound cannot propagate. This is illustrated by
reference to the exact analytical solution for the case of a two-dimensional jet impinging on a plane interface
(Fig. 4). For the simplest condition in which the pressure in the cavity (the lower region in Fig. 4) is negligible,
the pressure radiated into the water consists entirely of the dipole field

pðr; y;oÞ�
�F o

ffiffiffiffiffiffi
kw

p
sin yeifkwr�p=4gffiffiffiffiffiffiffi
2pr
p ; kwr!1, (33)

where angle y is defined as in Fig. 4. Therefore, to visualize more clearly the emergence of the dipole we plot
the acoustic directivity for the spherical cavity (again, / jpðr; y;oÞj2) normalized with respect to its value at
y ¼ p=2, clipping the beams in the fore and aft directions, as in Fig. 5.

It is also of interest to compare these predictions with those for two of the special cases discussed in
Section 2. In Section 2.4 the effect on sound generation of wave incoherence produced by a randomly irregular
cavity interface is modelled by the formal neglect of pressure waves incident on the interface from within
the cavity. In this case jpðr; y;oÞj2 in the far-field is given by Eq. (32) with Z2n;2m replaced by Ẑ2n;2m defined in
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Fig. 5. Directivity of the jet-excited sound for the general case of an air-filled spherical cavity at STP determined by Eq. (32) when

kwa ¼ 0:1, 1, 10, 100. Each curve is normalized with respect to its value at y ¼ p=2.

Fig. 6. Directivity of the jet-excited sound when the correction of Eq. (20) is introduced into Eq. (32) to account for incoherent reflection

of waves from the interface, for an air-filled spherical cavity at STP when kwa ¼ 0:1, 1, 10, 100. Each curve is normalized with respect to its

value at y ¼ p=2.

Fig. 7. Directivity of the jet-excited sound in case (ii) of Section 2.3 (a ‘vacuous’ cavity interior) determined by Eq. (33) for kwa ¼ 0:1, 1,
10, 100. Each curve is normalized with respect to its value at y ¼ p=2.
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Eq. (20). The corresponding directivities (in Fig. 6) are seen to be hardly changed from those predicted from
Eq. (32) for the full solution, indicating that the directivity of high-frequency sound is essentially unaffected by
reflections within the cavity.
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Second, in case (ii) of Section 2.3 pressure variations within the cavity are absent (a ‘vacuous’ cavity
interior). It now follows from Eq. (17) that

pðr; y;oÞ
Fo=a

				
				
2

�
1

ðkwrÞ2

X1
n;m¼0

AnAmP2nðcos yÞP2mðcos yÞ

h
ð1Þ
2n ðkwaÞh

ð1Þ
2mðkwaÞ

					
					; kwr!1. (34)

Again, the typical field shapes plotted in Fig. 7 are effectively identical with the corresponding plots for the full
solution.

This agreement occurs because, except at the resonance frequencies, Z2n=ðZ2n � 1Þ�Ẑ2n=ðẐ2n � 1Þ�1 when
rwbro. This conclusion has been confirmed (and the accuracy of the numerical procedure validated) by
recalculating the directivities for the fully compressible cavity and for the case of Section 2.4 of incoherent
interface scattering in cases where ro�rw (but with unchanged values of co and cw). The resulting directivities
are consistently found to be different from each other, and also different from the results in Figs. 5–7 for an
air-filled cavity.

5. Conclusions

The low-frequency sound radiated by the spherical model of a supercavity is dominated by the volumetric
monopole modes excited by the jet. The amplitudes of motions near the cavity are controlled predominantly
by damping produced by the sound radiation, and to a lesser extent by viscous and thermal losses in the cavity
and the steady hydrodynamic flow of gas from the ‘rear end’ of the cavity. For all frequencies of practical
interest, the continuity of pressure across the cavity interface and within the exhaust flow ensures that the
hydrodynamic damping is negligible, and therefore that the acoustics of the system are largely unaffected by
the gas exhaust flow.

The radiation from the cavity is omnidirectional at low frequencies, comparable to the Minnaert frequency
of the dominant monopole. As the frequency increases the radiation directivity develops a principal side-lobe
equivalent to that produced by a dipole acoustic source with axis along the radial direction of the gas jet
impinging on the interface. Our numerical results for the spherical cavity with a jet impinging at y ¼ p=2 to the
nominal direction of the mean water flow indicate that this dipole radiation (of directivity �sin2 y) is
accompanied by narrow beams radiated in the fore and aft directions ðy ¼ 0; pÞ. These beams are an artifact
of the spherical geometry that is likely to be absent in more realistic cavity geometries.

The theoretical results for the spherical cavity indicate that the side-line dipole is well formed when kwa410.
For the more general cavity this suggests that the dipole becomes prominent at frequencies exceeding about
1:5cw=RHz, where R is the mean radius of curvature of the interface at the point of impact of the jet. At such
frequencies, the self-noise generated by the gas jet might be expected to have a negligible influence on control
systems situated near the cavitator.
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